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1. INTRODUCTION

We consider a compact Hausdorff space B and denote by C(B) the set of
real or complex-valued continuous functions defined on B. Let V be an n­
dimensional linear subspace of C(B) and impose on each function / E C(B)
the Chebyshev norm, viz. II/II = max{1 j(x)l: x E B}.

We shall refer to these points x E B where the norm is attained, II/II =
I j(x)l, as the norm points off As in [2] we define an H-set with respect to V,
where V is spanned by the set of functions { gl , gz ,... , gn}, as follows.

DEFINITION 1. A finite subset {Xl"'" Xk} of B is an H-set with respect to
V if and only if the matrix equation

has a solution I = (/1"'" Ik ) with each Ii =1= O.
We then write the H-set as [Xi' Ai , ei , k] with Ai = Iii I and ei =

sgn Ii = IdA.; , and refer to the H-set and its point set {Xi} by the same letter
M; we normalize the Ai so that L Ai = 1.

The subspace V will satisfy the Haar condition if the smallest possible value
of k is n + 1 for any H-set with respect to V. A minimal H-set is one for
which no subset of the point set forms an H-set.

In [2] it was shown that Definition 1 is equivalent to the following

DEFINITION 2 (Rivlin and Shapiro [6]). [Xi, Ai' ei , k] is an H-set with
respect to V if and only if, for every h E V,

k

L Aieih(xi) = O.
i~l
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DEFINITION 3 (Collatz [5]). [Xi' Ai' ei , k] is an H-set with respect to V
if and only if there is no function hE V such that Re[eih(xi)] ?: 0 for all i,
with strict inequality for some i.

The usefulness of H-sets is shown by the following two theorems, see [2],
concerning best Chebyshev approximation to a functionfE C(B) by V.

THEOREM 1. If a function ho E V can be found such that a subset of the
norm points off - ho is the point set ofan H-set [Xi' Ai , ei , k], and the error
R = f - ho satisfies sgn R(Xi) = ei for all i, then ho is a best Chebyshev
approximation to f by V. Conversely, if ho is a best Chebyshev approximation
to f by V, then some finite subset of the norm points, say {Xl' X2 , ... , Xk}, and

the scalar values ei = sgn!(xi) - ho(xi), define an H-set [Xi' " ei , k].

THEOREM 2. IfM is an H-set contained in the set ofnorm points off - hI ,
with hI a best Chebyshev approximation to f, then M is also an H-set in the
set of norm points off - h2 , where h2 is any other best Chebyshev approxi­
mation to f by V.

We define strong unicity as in [7, p. 36]:

DEFINITION 4. hoE V is a strongly unique element of best approximation
to f E C(B) if there exists a constant r, 0 < r ~ 1, depending only on f and
V such that for every h E V,

Ilf - h II ?: IIf - ho II + r II ho - h II.

If V satisfies the Haar condition, then uniqueness of best uniform appro­
ximation follows and also strong unicity, see [4, p. 80]. Analogous results
are known for non-linear families satisfying the local Haar condition, see [1].
However, when the Haar condition is not satisfied, uniqueness is not
guaranteed. In this paper we construct from an arbitrary linear subspace V
a set of equivalence classes giving rise to best approximation which is unique
and satisfies the strong unicity criterion.

Let [C(B), M] be the set of all subsets of C(B) the restriction of whose
elements to an H-set M = [Xi' A.; , ei ,k] with respect to V are all equal.
[V, M] is similarly defined. Both are made linear spaces in the obvious way.
[f] denotes an element of one of them containing f

From Definition L and the natural linear map T of V onto [V, M), given
by Th = [h), we see that the linear space [V, M] will have as dimension the
rank of the matrix glxj) in Definition 1. We define a norm on [CCB), M] by
1J[f]llo = maXi I!(xi)l, so that we can speak on best approximation to [fJ
by [V,M].
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Remark. If h E V is a best Chebyshev approximation to f by V and We
construct the space [CCB), M] with Man H-set which is a subset of the set of
norm points off - h, then all the best Chebyshev approximations tofby V
are contained in [h], as M is contained in the set of norm points for each of
these best approximations, see Theorems 1 and 2 above.

2. UNICITY THEOREMS

For an H-set M the existence of a best approximation to each [f] by
[V, M] is guaranteed, see [4, p. 20]. We consider here the question of
uniqueness.

THEOREM 3. If h is a best Chebyshev approximation to f by V and M is an
H-set [Xi, Ai, ei, k] in the set of norm points off - h, then [h] is a best
approximation to [f] by [V, M] and inf{IIU] - [h']/lo: [h'] E [V, M]}=
Ilf-hll·

Proof We first prove that /If - h II = 11[/] - [h]lIo'
From Theorem 1, if fl E [f] and hI E [h],

for all i

because h is a best Chebyshev approximation to fby V; thus

11[/] - [h]llo = m~x I!(Xi) - h(Xi) I = Ilf - h II .
I

Now let us assume that [h] is not a best approximation to [f] by [V, M],
so there is an [hI] such that

11[/1 - [h1111o < 11[f] - [h111o ;

hence for all i,

i.e.,

Re[ei(f(Xi) - h(Xi) + h(Xi) - h1(Xi))]

< Ilf - h II = e;(f(x;) - hex;)) from Theorem 1,

giving

for all i.

This contradicts Definition 3, as M is an H-set with respect to V; hence
the result.
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THEOREM 4. A best approximation to [f] by [V, M] is unique.

Proof Let [h] be as in Theorem 3. Let [hI] be some best approximation
to [f] by [V, M] .Then we have for all i,

Re[ei(f(Xi) - h1(Xi))] ~ ll[f] - [h1]llo

~ 11[f] - [h]llo

=llf-hll

= ei!(xi) - h(Xi))'

Thus Re[ei(h1(xi) - h(Xi))] ~ 0 for all i. As [x,.\, ei , k] is an H-set with
respect to V, strict inequality can occur for no i. Hence h1(Xi) = h(Xi) for all i,
that is [hI] = [h].

We now show that best approximation is strongly unique.

THEOREM 5. Let h be a best Chebyshev approximation to f by V and let M
be an H-set [Xi' Ai , ei , k], a subset of the set ofnorm points. For any g in V,

11[f] - [h]llo~ C11[f] - [h]lI~ + r II[g] - [h]II~)1/2

which reduces in the real case to

I![f] - [g]lIo ~ [I[f] - [h]llo + sll[g] - [h]llo

where r, s are positive constants depending onfand V only.

Proof Let p = Ilf - h II; from Theorem 1 and Definition 2:

!(Xi) - h(Xi) = pei

and for every g E V,
Ii:

-Ajejg(Xj) = L Aieig(xi),
i=l
ih

Ii:
where each Ai > 0 and Li~l Ai = 1.

For such g, set

11[f] - [h - g]llo - 11[f] - [h]llo = m (~O).

Then

11[f] - [h - g]lIo = p + m

and for all i,

I!(Xi) - h(Xi) + g(Xi)I ~ p + m.

(1)

(2)

(3)



STRONG UNICITY

Thus from (1) we get

hence
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and from (3),

Re[eig(Xi»] ~ m for all i, (4)

Setting p = (mini "i)-I> 1, we have from (2),

for all i. (5)

and from (4) and (5),

! Re[eig(Xi)] [ ~ pm for all i,

Hence

Ig(xi)12~ m2+ 2(1 + p) pm.

1![g]ll~ ~ m2+ 2(1 + p) pm.

Solving this inequality gives

m ~ -(1 + p) p + ((l + p)2 p2 + II[g]II~)1/2

~ -p + (p2 + (11[g]llo/(I + p)2»1/2.

Using the definitions of m and p and letting (1 + p)2 = ,-t, we get

11[f] + [h - g]llo~ (l1[f] - [h]ll~ + r II[g]II~)1/2.

As V is a linear space, we can write this as

11[f] - [g]lIo ~ (11[f] - [h]ll~ + r II[h] - [g]II~)1/2.

In the real case we use the inequality I eig(xi)! ~ pm which gives for (6)
'g(xi)1 ~ pm; solving (6) as before we get, with s = r\

I![f] - [g]llo ~ 11[f] - [h]llo + sll[h] - [g]llo .

We note that p, and hence rand s, depend on V and f but not on h.

COROLLARY. [fin Theorems 4 and 5, M is a minimal H-set with k = n + 1,
then h is the unique best uniform approximation to f by V, and also, for every
gE V, we have

IIf - g II ~ (lif - h 11 2 + r II h - g 11
2)1/2
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which reduces in the real case to

Ilf - g II ~ Ilf - h II + s II h - gil,

where rand s depend only on V andf

Proof The matrix gi(Xj) in Definition 1 has rank n, so every element [h]
in [V, M] consists of a single element and [V, M] is essentially V. Thus
uniqueness follows from Theorem 4. For the norms we have the following
relationships:

Ilfll ~ [[[flilo ,
Ilf - h II =IHfl - [h]llo = p,

and, for some t > 0,

til h - g [I ~ 11th] - [g]llo,

as both norms define the same topology for V.
Using these inequalities the strong unicity follows.
If now V satisfies the Haar condition, then every minimal H-set has n + 1

points; thus, from the last corollary, uniqueness of best approximation and
strong unicity follow directly.

EXAMPLE. In [3] it has been shown that all best uniform approximations
to xyz by polynomials in the three variables x, y, z of degree 2 or less, on
the unit ball, are given by k(x2 + y2 + Z2 - 1) with I k I ~ 27-1 /2 the error
being 27-1 / 2. The H-set M associated with these best approximations consists
of the 8 points (±3-1/ 2, ±3-1 / 2, ±3-1 / 2) with ei equal to the product of the
corresponding signs and each Ai = 1/8.

The best approximation to [xyz] will be the set of functions of the form
a(x2 + y2 + Z2 - 1). The value of p in Theorem 5 is 8 so that s = 1/8 and
for every [g] E [V, M],

II [xyz] - [g]llo ~ 27-1/ 2 + (11[g] - k(x2 + y2 + Z2 - 1)110/8).

As x 2 + y2 + Z2 = 1 on the H-set, this reduces to

II [xyz] - [g]llo ~ 27-1 /
2 + (11[g]1I0/8).
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